Next Score View the next score

    Science in Mind

    Researchers try to cull fastest sperm

    Physicist Erkan Tüzel and James Kingsley, a doctoral candidate in physics, examined a component of a computing cluster.
    Physicist Erkan Tüzel and James Kingsley, a doctoral candidate in physics, examined a component of a computing cluster.

    Is male infertility partly a simple fluid mechanics problem?

    Physicist Erkan Tüzel works in a field that seems just about as far removed as possible from delicate questions about human reproduction; his lab at Worcester Polytechnic Institute develops algorithms to describe the behavior of complex fluids. But after he heard a talk by Harvard Medical School bioengineer Utkan Demirci, who carves microscopically small channels and then allows fluids to flow through them, the two began to talk about collaborating. Their common ground? Designing technology that could cull the healthiest, fastest-moving sperm from the slowpokes.

    Doctors trying to help couples reproduce through in-vitro fertilization would like to have an easy way to identify and isolate the sperm most likely to result in a fertilized egg.


    Figuring out how to reliably do that, however, may have as much to do with physics as it does with biology.

    Get Today's Headlines in your inbox:
    The day's top stories delivered every morning.
    Thank you for signing up! Sign up for more newsletters here

    In real-world experiments, sperm can swim through tiny channels created by Demirci at Brigham and Women’s Hospital. Computer modeling by Tüzel could be used to understand how to design those channels so that they select the right sperm.

    “Sperm cells interact with each other when in confined geometries,” Tüzel said. “Just like birds when they fly in formation like a flock, similarly through the fluid, the sperm cells interact with each other and they synchronize their tails — they start beating in phase. . . . How can we use this information to learn from it and utilize it?”

    Tüzel was recently awarded a $300,000 grant from the National Science Foundation to build computational tools that could help design systems that sort sperm in real life. The work will be informed by how sperm behave in the laboratory, and the researchers are interacting and using the experimental results to tweak the computer models.

    Research that straddles two disciplines has become a vogue in research, with institutions doing everything they can to seed interactions between scientists who may, unbeknownst to one another, have complementary approaches that could help solve tough problems.

    Carolyn Y. Johnson can be reached at Follow her on Twitter @carolynyjohnson.